skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Xuesong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A mutualistic co‐evolution exists between the host and its associated microbiota in the human body. Bacteria establish ecological niches in various tissues of the body, locally influencing their physiology and functions, but also contributing to the well‐being of the whole organism through systemic communication with other distant niches (axis). Emerging evidence indicates that when the composition of the microbiota inhabiting the niche changes toward a pathogenic state (dysbiosis) and interactions with the host become unbalanced, diseases may present. In addition, imbalances within a single niche can cause dysbiosis in distant organs. Current research efforts are focused on elucidating the mechanisms leading to dysbiosis, with the goal of restoring tissue homeostasis. In vitro models can provide critical experimental platforms to address this need, by reproducing the niche cyto‐architecture and physiology with high fidelity. This review surveys current in in vitro host–microbiota research strategies and provides a roadmap that can guide the field in further developing physiologically relevant in vitro models of ecological niches, thus enabling investigation of the role of the microbiota in human health and diseases. Lastly, given the Food and Drug Administration Modernization Act 2.0, this review highlights emerging in vitro strategies to support the development and validation of new therapies on the market. 
    more » « less
    Free, publicly-accessible full text available May 14, 2026
  2. Abstract Host mucosal barriers possess an arsenal of defense molecules to maintain host-microbe homeostasis such as antimicrobial peptides and immunoglobulins. In addition to these well-established defense molecules, we recently reported small RNAs (sRNAs)-mediated interactions between human oral keratinocytes and Fusobacterium nucleatum (Fn), an oral pathobiont with increasing implications in extra-oral diseases. Specifically, upon Fn infection, oral keratinocytes released Fn-targeting tRNA-derived sRNAs (tsRNAs), an emerging class of noncoding sRNAs with gene regulatory functions. To explore potential antimicrobial activities of tsRNAs, we chemically modify the nucleotides of the Fn-targeting tsRNAs and demonstrate that the resultant tsRNA derivatives, termed MOD-tsRNAs, exhibit growth inhibitory effect against various Fn type strains and clinical tumor isolates without any delivery vehicle in the nanomolar concentration range. In contrast, the same MOD-tsRNAs do not inhibit other representative oral bacteria. Further mechanistic studies uncover the ribosome-targeting functions of MOD-tsRNAs in inhibiting Fn. Taken together, our work provides an engineering approach to targeting pathobionts through co-opting host-derived extracellular tsRNAs. 
    more » « less